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A linear stability analysis has been implemented for Taylor-Dean flow, a viscous flow 
between rotating concentric cylinders with a pressure gradient acting in the 
azimuthal direction. The analysis is made under the assumption that the gap spacing 
between the cylinders is small compared to the mean radius (small-gap approxi- 
mation). A parametric study covering wide ranges of p, the ratio of angular 
velocity of the outer cylinder to that of inner cylinder, and p, a parameter 
characterizing the ratio of representative pumping and rotation velocities is 
conducted. For - 1 < p < 1, results show that non-axisymmetric instability modes 
prevail in a wide range of p. The most stable state is found to  occur within 
-3.9 < p < -3.6 for p < 0.3 and a t  - p  x 1.59p+3.5 for p > 0.3. The most stable 
state is always accompanied by a shortest critical axial wavelength. Instability 
modes with different azimuthal wavenumber have similar stability characteristics 
because the basic state is either close to or at  the most stable situation. This 
similarity is absent from either Taylor or Dean flow. 

1. Introduction 
The stability of a viscous flow between two concentric cylinders is of both 

academic and engineering application interest. Couette ( 1890) initiated the 
investigation of the flow in an annulus between two rotating cylinders for bearing 
lubrication and viscometry. Taylor (1923) considered the stability problem both 
experimentally and theoretically and obtained a criterion for the onset of a 
secondary motion in the form of cellular toroidal vortices spaced regularly along the 
axis of the cylinder (Taylor problem). Another similar type of secondary flow may 
occur between two concentric cylinders when a viscous flow is driven by an azimuthal 
pressure gradient (Dean problem). This problem was first studied by Dean (1928) and 
had been considered again by Hammerlin (1958) and Reid (1958). Walowit, Tsao & 
DiPrima (1964) studied both the Taylor and Dean problems for arbitrary gap 
spacings. The Taylor-Dean problem is concerned with the stability of a viscous flow 
between two concentric cylinders, in which the basic flow (referred as Taylor-Dean 
flow) is the combination of a circular Couette flow and an azimuthal Poiseuille flow. 
A detailed measurement of an azimuthal velocity profile of the basic flow is available 
in Chen et al. (1990). As far as engineering application is concerned, the flow driven 
by both rotating cylinder(s) and an azimuthal pressure gradient can be found in, for 
example, an electrogalvanizing line in the steel-making industry which uses a roller- 
type cell to plate zinc onto the surface of a steel strip (Komoda 1983; Nabatame 1984) 
and in a rotating drum filter in the paper- and board-making industry in which a 
sheet of fibre off a drum rotating in a vat full of fibre suspensions (Brewster & Nissan 
1958). Paper-making engineering used to observe that longitudinal streaks regularly 
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spaced along the axis of the drum arise in the sheet formed, which are obviously 
resulted from the secondary fluid motion predominating in the curved passage. 

The Taylor-Dean problem was first studied experimentally by Brewster & Nissan 
(1958) and both experimentally and theoretically by Brewster, Grosberg & Nissan 
( 1959). The small-gap approximation was assumed in their theoretical analyses. 
Later, the theoretical analysis was extended by DiPrima (1959), using the Fourier 
expansion technique to study the problem with the small-gap approximation in a 
larger range of /? (to be defined in $2) and by Meister (1962) as well as Sparrow & Lin 
(1965) using a shooting technique to attack the problem for arbitrary gap spacings. 
All these studies considered the onset of instability to  be axisymmetric as well as 
stationary and were restricted to the case of ,u = 0, in which the inner cylinder is 
rotating while outer cylinder is fixed. 

Of particular interest is the result obtained by DiPrima (1959) that the flow is most 
stable near /3 = - 3.5, a t  which the critical wavenumber (aC) jumps discontinuously 
from 5.8 to 7.4 as /l decreases. Chandrasekhar (1961) proposed a physical explanation 
for the sharp maximum of !P occurring at /? = -3.5 by examining the extent of 
instability zones in the annulus. On the other hand, to explain the rather peculiar 
dependence of ac on /3, Kurzweg (1963), on the basis of Rayleigh's criterion (Rayleigh 
1916), noted analytically that the larger ac corresponds to  the instability occurring 
in the region near inner cylinder and the smaller ac is related to  the instability in the 
region near outer cylinder. Hughes & Reid (1964) found that the discontinuity of ac 
arises because the neutral curve consists of two separated branches (see the circle- 
solid curves in figure 1 )  and the maximum of Tc as well as the jump of ac occurs 
precisely a t  /3* = 3.667. The peculiar topology of the separated neutral curves near 
/l* was re-examined by Raney & Chang (1971) by considering the possible existence 
of the oscillatory instability modes. They showed that oscillatory axisymmetric 
modes exist of stability approximately equal to that of a steady mode very close to 
/l* (see the triangle-dash curve in figure 1 ) .  They also indicated that,  although the 
resulting reduction of the value of T" is not significant, the most critical mode is 
oscillatory non-axisymmetric with m = 1 in -3.850 < /3 < -3.635. Recently, 
Kachoyan (1987) has implemented an extensive study on the neutral curve topology 
and pointed out that  the separated neutral curves are connected at  

In  fact, a fully developed Taylor-Dean flow in an annulus seems to  be artificial 
because, under any circumstance, to provide an external pressure gradient in the 
azimuthal direction there must be an associated breakdown of the symmetry of the 
geometry of annulus, which makes a fully developed basic flow impossible. However, 
the Taylor-Dean flow may in reality exist in a portion of the annulus, such as the 
flow in eccentric rotating cylinders (see figure 16 of Vohr 1968) or the flow in a 
partially filled horizontal annulus (Chen et al. 1990). Mutabazi et al. (1989) 
implemented a linear stability analysis for the Taylor-Dean flow in the latter 
configuration, in which the averaged velocity due to the rotating cylinders is equal 
to, but opposite in direction to, the averaged velocity due to the pressure gradient 
caused by the free surface within the gap; namely, /3 = -3. They considered the 
instability to  arise from oscillatory and axisymmetric modes. To study the flow 
pattern formation as well as the transition from the basic state to disorder, Mutabazi 
et al. (1988, 1990, 1991) conducted a series of experiments for a variety of ,u in the 
same configuration. They indicated that some sort of nonlinear interaction such as 
spatiotemporal pattern modulation may exist in Taylor-Dean flow. 

In  the present study, we consider a fully developed Taylor-Dean flow within a 
small-gap coaxial annulus. A complete linear stability analysis with the small-gap 
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approximation is implemented, in which three-dimensional disturbances of both 
stationary and oscillatory modes are considered. We first compare the calculated 
results with those of previous studies and show that the most unstable mode for 
,u = 0 near p* is non-axisymmetric with m = 5 (see the square-dash curve in figure 
1 ) .  A systematic parameter study which covers - 1 < ,u < 1 and - 10 < /3 < 10 is 
then carried out. Results provide an overview of the general stability characteristics 
and the nature of the non-axisymmetric modes as well as the corresponding 
travelling waves in the azimuthal direction. 

2. Problem formulation and method of solution 
We consider two infinitely long concentric circular cylinders with the z-axis as 

their common axis and let R, and R, denote the radii of the inner and outer cylinders, 
respectively. The flow in the annulus is driven simultaneously by rotating the inner 
and outer cylinders and by an azimuthal pressure gradient. A cylindrical coordinate 
system is chosen which is usually denoted by r ,  8, and z. If U,, U,, and U, are the 
velocity components in the increasing r-, 8-, and z-directions, the Navier-Stokes 
equations admit a steady solution in terms of the velocities of the three components : 

U, = U, = 0, U, = V(r ) .  (1)  

The basic state velocity V(r ) ,  a combination of the fully developed velocity 
distributions of circular Couette and azimuthal Poiseuille flows, is given by 

V ( r )  = Ar+-+--  
r 2 p v a e  

where p, v, and P are the density and kinematic viscosity of the fluid, and the 
pressure of the basic flow, respectively. The constants are 

The i3P/a8 in ( 2 )  accounts for the basic-state azimuthal pressure gradient due to 
external pumping and 9 is the ratio of radii, RJR,.  Note that the pressure may not 
be single-valued, i.e. P(8+2n) + P(B), if free surfaces exist within the gap (Mutabazi 
et al. 1989). In  the present study, we assume that the gap between the two cylinders 
d = R,-R,,  is much smaller than the mean radius R, = #R,+R,). Consequently, 
after taking the limit q+ 1 and some further manipulation, we obtain 

V ( r )  = r s 2 , [ 1 - ( l - , u ) + ~ x ( 1 - z ) ] ,  (4) 

where x = ( r - R l ) / d  and p = 3(1 + p )  V,/V,, in which V, = &Ql(l  + p )  and 
V, = - (aP/aO) (d2/12vR,) are the average velocities due to rotation and pumping, 
respectively. 

To study the stability of this flow we superimpose a general disturbance on the 
basic solution, substitute in the equations of motion and the continuity equation and 
neglect quadratic terms. Since the coefficients in the resultant disturbance equations 
depend only on r ,  it  is possible to look for solutions of the form 

(5) 

where w(r) is the azimuthal component of the small disturbance velocity, and with 
similar expressions for the other components of velocity and the pressure. Note that 

u, = V ( r )  + w(r) exp [i(st + m8 + A z ) ] ,  
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m may be a non-integer as the partially filled gap configuration is considered 
(Mutabazi et al. 1989). However, for the present case of fully developed Taylor-Dean 
flow, we can take m to be zero or a positive integer. The parameter s is in general 
complex and h is real. 

We now introduce the dimensionless variables 

Since the small-gap approximation yields A = -SZ,(l -,u)/2S plus terms 0(1), we 
have asymptotic ally 

(7) k - [6/2( 1 -,u)]im, T - 2(1 -p) (QIRl d / v ) 2 S ,  

which account for the scaling of the azimuthal wavenumber and the Taylor number, 
respectively. After eliminating the perturbations in the pressure and the axial 
velocity, and letting (v/2sZ1 aad2)u be replaced by u, the radial component of small 
disturbance velocity, we obtain the following sixth-order system of ordinary 
differential equations (ODES)  : 

L ( D 2 - a 2 ) u  =K(x)u,  (8) 

where D = d/dx and 
L = Dz-aa"-i[u+kfiK(x)] 

(9) 

and K(x) = l - ( l -p)x+/3x(l-x) .  (11)  

(12) 

The boundary conditions a t  x = 1 and x = 0 are 

u = DU = v = 0. 

Note that as P = 0, equations (8) and (9) are identical with those of the Taylor 
problem as described in Krueger, Gross & DiPrima (1966). 

The ODES (8) and (9) with the boundary conditions (12) determine an eigenvalue 
problem of the form 

The marginal state is characterized by gi, the imaginary part of v, equal to  zero. For 
given values of ,u and P, which determine the basic-state velocity, we seek the 
minimum real positive T over real a > 0 and real k >, 0, for which there is a solution 
for (13) with vi = 0. The value of T sought is the critical Taylor number Tc for 
assigned values of /3 and p, The values of a and k corresponding to  !P determine the 
form of the critical disturbance. Since the small-gap approximation is assumed, we 
have S + O .  For a given value of 6 < 1 (S = 0.05 is chosen for the present study, see 
Krueger et al. 1966), it has physical meaning only for values of k corresponding to 
positive integer or zero values of the azimuthal wavenumber m. Moreover, the real 
part of u, namely a,, corresponding to Tc determines the frequency of the oscillation 
as well as the angular velocity of the travelling wave. We work with the dimensionless 
wave speed c = - u,/k!@ = - s,/mSZ,, which in essence accounts for the angular 
velocity of the travelling wave relative to the angular velocity of the rotating inner 
cylinder. We solve the two-point eigenvalue problem defined by (8)-(12) by a 
shooting technique together with an unit-disturbance method. This method has been 
used by, for example, DiPrima (1955), Harris & Reid (1964), Sparrow, Munro & 

F(P,  p, k ,  a, v, T )  = 0. (13) 
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Jonsson (1964), and Krueger et al. (1966) for similar hydrodynamic stability 
problems. For details the reader is referred to either Harris & Reid or Krueger et al.. 
Note that for obtaining a faster convergence of the iteration, instead of using an 
algorithm like the bivariate interpolation used by Krueger et al. (1966), we use a 
hybrid algorithm developed by Powell (1970 p. 87) on the basis of a Newton-Raphson 
scheme as well as the steepest-descent iteration. 

3. Results and discussion 
3.1. Veri;fcation of the computer code 

Krueger et al. (1966) studied the instability of Taylor flow with respect to non- 
axisymmetric disturbances, which is a special case of the present Taylor-Dean 
problem with /? = 0. We thus conduct calculations for /? = 0 and check the results in 
terms of T", a', and ur with the corresponding data obtained by Krueger et al. (table 
1). It is shown that for several selected k, which are associated with m = 0-5, the 
comparison is in excellent agreement. Another check is made possible by considering 
the instability with respect to axisymmetric disturbance for small-gap Taylor-Dean 
problem as done by DiPrima (1959). By assuming m = 0, we obtain the characteristic 
values Tc and ac for various /3, which again agree very well with those of DiPrima. 
The only investigation considering non-axisymmetric instability (for m = 1 only, 
unfortunately) for the small-gap Taylor-Dean problem has been done by Raney & 
Chang (1971). Their results are also confirmed by our calculations. 

3.2. Non-axisymmetric oscillatory modes for p = 0 

For p = 0 and near p* = -3.667, the neutral curve for stationary axisymmetric 
modes has two branches shown in figure 1 as the circle-solid curves. For /3 = -3.65 
(figure 1 a) ,  T" is determined by the right-hand branch and for /3 = - 3.7 (figure 1 c) by 
the left-hand branch; at  /?*, both branches have approximately equal Tc. As a result, 
at /3*, the ac of the axisymmetric mode experiences a dramatic change from 7.8 to 5.7 
and Tc reaches a maximum (see the circles shown in figure 2a, b ) .  Raney & Chang 
(1971) showed that a neutral curve exists corresponding to oscillatory axisymmetric 
modes lying between two branches (see the triangle-dash curve shown in figure 1). At 
/?*, both stationary and oscillatory axisymmetric modes are of approximately equal 
stability. In the present study by considering the possible existence of non- 
axisymmetric modes, we find that the most unstable mode near /3* is non- 
axisymmetric with m = 5, which is an instability mode with five waves travelling in 
the azimuthal direction. As shown in figures 1 (a-c), the value of T of the neutral 
curve (square-dash) for m = 5 is invariably lower than that of either the stationary 
or oscillatory axisymmetric mode. 

By extending the consideration to a larger range, - 10 < /3 < 10, we find that the 
stability of Taylor-Dean flow is dominated by non-axisymmetric modes in 
-4  < /? < -2.2, in which the azimuthal wavenumber m varies from 1 to 5 depending 
on /3. We present the Tc and associated ac for - 10 < /3 < 10 in figures 2 ( a )  and 2 ( b ) ,  
respectively, in which the solid curve represents the critical values corresponding to 
the axisymmetric mode and the dot curve accounts for those corresponding to non- 
axisymmetric modes. The circles are the results obtained by DiPrima (1959) for the 
axisymmetric mode. As one can see, the Tc associated with non-axisymmetric 
instability is generally smaller than the corresponding one for an axisymmetric 
disturbance and is closer to the experimental data obtained by Brewster et al. (1959), 
see figure 1 of DiPrima. The stability characteristics in terms of Tc as shown in figure 
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a a a 
FIGURE 1. Neutral curves for p = 0 and various ,B, -0-, axisymmetric stationary mode m = 0 
(Hughes & Reid 1964) ; - - - n---, axisymmetric oscillatory mode m = 0 (Rayney & Chang 1971) ; 
---o---, non-axisymmetric modem = 5 (present study). ( a )  /3 = - 3.65; (b) /I = p* = -3.667; (c) 
p = -3.7. 

Y k 
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0.47434 
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3.127 3.127 
3.13 3.131 
3.14 3.143 
3.16 3.163 
3.19 3.190 
3.23 3.225 

4.00 3.999 
3.94 3.941 
3.80 3.799 
3.68 3.675 
3.64 3.642 
3.69 3.686 

A 

3 389.9 
3402.3 
3440.1 
3504.7 
3598.5 
3725.5 

18 663 
18 472 
17965 
17401 
17 126 
17 345 

T" 

B 

3390.1 
3402.5 
3440.3 
3504.8 
3598.6 
3725.6 

18 669 
18478 
17970 
17 404 
17 129 
17345 

~~ ~ 

A B 

0 0 
4.8459 4.8534 
9.7675 9.7661 

14.799 14.799 
20.024 20.020 
25.515 25.505 

0 0 
6.3458 6.3375 

12.128 12.127 
17.028 17.013 
21.263 21.297 
25.632 25.600 

TABLE 1. Comparison between the results of present study (A) and those of Krueger et al. 
(1966) (B) for Taylor problem /I = 0 

2 (a )  illustrate that the stability of Taylor-Dean flow increases monotonically with 
decreasing ,8 for ,8 < - 3.743 but its stability decreases otherwise. The maximum of 
T" occurs a t  ,8 = p,,, = -3.743, a t  which the critical axial wavenumber a' also 
reaches the maximum. The dot curve of ac shows several discontinuities in slope, each 
of which is associated with a switch between two different non-axisymmetric modes. 
Near Pmaxr the value of ac for the non-axisymmetric mode does not have as large a 
jump as the axisymmetric mode. In  general, as with F ,  the a' corresponding to a 
non-axisymmetric disturbance is smaller than that for an axisymmetric one. 

To explain physically the occurrence of the sharp maximum of TC, Chandrasekhar 
(1961) argued that the value of ,4 a t  which Tc reaches its maximum value should lie 
near ,8 = - 3  since there, based on Rayleigh's criterion, the layers of stable and 
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unstable fluid are of equal extent within the gap (see Chandrasekhar, figure 94, 
p. 356). When applied to the case p 4= 0, however, Hughes & Reid (1964) showed that 
this argument becomes less compelling. For the present case, which considers viscous 
effects on the stability characteristics in contrast to the inviscid-flow assumption 
made for determining Rayleigh's criterion, the maximum of T" occurs at  P = - 3.743. 
DiPrima (1959) proposed the more promising physical explanation that the most 
stable state occurs at p,,, (-3.667 according to his computation for axisymmetric 
mode), because, as long as the average velocities of pumping and rotation are nearly 
equal but opposite in sign (note that /3 = - 3  is the case in which the average 
velocities of pumping and rotation are equal but opposite in direction), they tend to 
cancel each other and are quite large in magnitude before the instability thresholds 
are reached. 

3.3. General stability characteristics 
To study the general stability characteristics of Taylor-Dean flow, we consider 

wide ranges of p and P, the two major parameters determining the basic flow. The 
prevalence of non-axisymmetric instability is evident by observing the results shown 
in figure 3 where instability modes varying from m = 0 to 8 can be identified. In this 
(p, P)-plane covering - 1 < p < 1 and - 10 < p < 10, the resolutions of both Ap and 
A@ are up to 0.1 ; therefore, in total 1420 cases of different (p, p) are considered. Each 
case (or point) corresponding to a non-axisymmetric mode is represented by a 
particular marker (see the caption of the figure) and the point for the axisymmetric 
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- 4  
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-1.0 -0.6 -0.2 0.2 0.6 1 .o 
P 

FIGURE 3. Map of non-axisymmetric modes in the (p,  P)-plane : -, boundary between different 
modes; ---, boundary between the modes with opposite angular velocity; 0,  m = 1 ; 0,  m = 2 ;  
+ , m = 3 ;  n . m = 4 ;  x ,  = 5 ;  . , m = 6 ; A , m = 7 ;  @, m = 8 .  

mode is not marked. The solid curve accounts for the boundary between different 
modes and the dot curve represents the boundary dividing the modes with opposite- 
travelling wave direction. 

A few typical cases in figure 3 concerning mode changing are worth noting. We first 
examine the case /3 = 0, the Taylor problem as considered by Krueger et al. (1966). 
It is found that the instability mode becomes non-axisymmetric with m = 1 at 
p = -0.78, and changes into other modes with higher m as p decreases. The values 
of p corresponding to the mode changing agree excellently with those obtained by 
Krueger et al. (see also table 1 for comparison of other data). We now examine the 
cases of fixed ,u and varying /3. For ,u = - 1 ,  as /3 decreases, the instability mode 
becomes non-axisymmetric with m = 1 a t  /3 = 0.6, and changes into m = 2 at 0.5, 
m = 3 a t  0.4, m = 4 at 0.2, m = 5 at -0.3, m = 6 at -1.3, m = 7 at -2.7, m = 8 at 
- 3.9, and becomes axisymmetric again a t  - 4.0. The non-axisymmetric modes all 
travel in the same direction as the inner cylinder rotation. For p =-0.5,  the 
instability mode becomes non-axisymmetric with m = 1 at approximately p = -0.8 
(more precisely -0.85), and changes into different modes of m = 2, 3, 4, 5, and 6 as 
p decreases to -0.9, - 1 ,  - 1.3, - 1.9, and - 2.8, respectively. In - 3.8 < /3 < - 3.7, 
the mode switches between m = 6 and 1 with opposite-travelling wave direction. For 
larger p, the sequences of the mode-changing due to decreasing p are, for instance, 
1-2-34-5-2-1 for p = 0, 1-2-34-3-2-1 for p = 0.5, 2-3-3-2 for p = 0.7, and 
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FIGURE 4. Variation of T" with /3 and p. 

2-3-&5-4-2 for y = 0.9, and so on. From these sequences one can see that increasing 
,u reduces the number of mode changes except for ,u close to 1. It is also noted that, 
as the travelling wave direction is the same as that of inner cylinder rotation (i.e. 
positive c or negative err), the azimuthal wavenumber m generally increases as ,u 
decreases, whereas the m-y relation is reversed as the travelling wave and inner 
cylinder move in opposite directions. 

The variation of !P and ac versus varying ,u and /3 are present by three dimensional 
plots in figures 4 and 5 ,  respectively. The constant level contours with increments 
A P  = 20000 and AaC = 1 are also shown in the (y,P)-plane to make the data more 
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FIGURE 5.  Variation of ue with p and p. 

traceable. As shown in figure 4, T" is generally a monotone decreasing function of p 
for all the p considered. On the other hand, for a fixed p, T" first increases with p, 
reaches a maximum, then decreases. Owing to the insufficient resolution of Ap (=  1 
in figures 4 and 5), the difference between the pmax of various p is not clearly 
demonstrated. As with the raw data along with figure 3, we found that the p,,, is 
either on the lower boundary dividing the axisymmetric and non-axisymmetric 
modes or on the dotted curves in figure 3. Namely, for p < 0.3, the Pmax is within 
- 3.9 < p < - 3.6 ; while forp > 0.3, the relation betweenp and p,,, is approximately 
linear, governed by -p,,, z 1.59p+3.5. 
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2.5 x lo4 L 
4 5 6 7  

a a a 
FIGURE 6. Neutral curves of different modes for ,u = - 1 and various p: -up, m = 8; 

---o--- , m = 0. (a) p = -3.9; ( b )  p = -3.934; (c) /3 = -3.95. 

Figure 5 illustrates that ac increases monotonically with p for approximately /3 > 1 
and becomes decreasing otherwise except very near /3 = 4.2, where ac increases 
slightly with p near p = 0.3. It also shows that, for all the p considered, ac first 
increases with p, reaches a maximum, then decreases dramatically to a minimum, 
and eventually increases slightly for larger /3. Generally, the maxima of both F and 
ac occur a t  the same (p,  p). One also notes that for a fixed p,  both Tc and ac increase 
with m ;  namely, the instability mode with higher m is of greater stability and smaller 
critical axial wavelength. 

It is also worth reporting the nature of the neutral curves. There are two kinds of 
neutral curve for the present problem. One curve illustrates the variation of T with 
a and the other accounts for the relation between T and m. The neutral curve in the 
(T, a)-plane for a non-axisymmetric instability mode is unimodal. However, as the 
change of instability mode occurs, the neutral curve consists of two branches, each 
of which accounts for a mode with different azimuthal wavenumber m and, 
accordingly, the neutral curve is bimodal. The bimodal instability corresponds to a 
finite jump of ac (figure 6). The relation between T and m for p = - 1 is shown in 
figure 7 ,  for example, which presents the values of for various m and several 
selected values of /3 (where c is the critical Taylor number of m = 0). The points 
connected by a continuous curve are associated with the same value of p. For /3 = 1, 
Tc/c is a monotone increasing function of m, and m = 0 is the most unstable mode. 
The m associated with the minimum of F/Tc, increases as /3 decreases. For /3 = - 3.8, 
the most unstable mode is m = 8. Note that for these cases in p > p,,, = - 3.934, the 
Tc of different modes vary greatly. But this is not the case for /3 < /3,,,. For instance, 
as /3 decreases to -4, the mode of m = 0 is most unstable but the values of P/c of 
all modes with different m are quite close. Similar results obtained for the cases of 
different p considered. Generally, the cases for which the similarity of the Tc of 
different modes holds are those located in the region below the curve of figure 3 
associated with the maximum of F. In  fact, in addition to Tc, the similarity between 
modes of different m also holds for ac, c and its disturbance velocities in both the 
radial and azimuthal directions. This similarity of stability features is absent from 
either Taylor or Dean flow. 
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FIGURE 7. Neutral curves in the ( (P/E),  m)-plane for various p as p = - 1 ; where is the 

T" value for m = 0 .  

4. Summary 
We have conducted a complete analysis for the onset of secondary motion of 

Taylor-Dean flow in a small-gap spacing between two infinitely long rotating 
cylinders. We first show that previous investigations for the stability of small-gap 
Taylor-Dean flow were incomplete owing to the lack of consideration of the existence 
of non-axisymmetric oscillatory modes which in reality prevail in wide ranges of both 
p and p. In particular, the peculiar neutral curves of m = 0 for near p* = -3.667 
presented by Hughes & Reid (1964) are replaced by the neutral curve of m = 5 ,  which 
is unimodal and most unstable. We then identify the instability mode for each (p, p) 
pair in the (p,P)-plane which covers - 1 < p < 1 and - 10 < p < 10. The range of /3 
in which the non-axisymmetric modes predominate decreases with increasing p. For 
a fixed p, the mode with higher m is of greater stability and smaller axial wavelength ; 
the most stable state with smallest axial wavelength occurs at  a /3 at which the 
travelling wave changes its direction. When the instability mode is changing into the 
other mode, the neutral curve in terms of T and a consists of two connected branches, 
each of which accounts for the neutral curve of different m. For ,8 < p,,,,,, modes with 
different azimuthal wavenumber m are of similar stability characteristics in terms of 
F,  ac, c, and associated eigenfunctions of disturbance velocities. 
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